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The scattering of waves due to disorder is ubiquitous throughout 
nature. Examples range from the scattering of light as it passes 
through clouds or sugar to the scattering of sound waves in the 

presence of fluctuations. These phenomena have intrigued scientists 
for centuries. However, a major breakthrough in the understanding 
came in 1958 from a seemingly unrelated context: the coherent scat-
tering of electrons passing through crystals that contain disorder. 
Phillip Anderson proposed that scattering from disorder can bring 
transport to a complete halt1. Almost 20 years later, Anderson made 
a speech on the Nobel podium, stating: “Localization was a differ-
ent matter: very few believed it at the time, and even fewer saw its 
importance; among those who failed to fully understand it at first 
was certainly its author. It has yet to receive adequate mathematical 
treatment, and one has to resort to the indignity of numerical simu-
lations to settle even the simplest questions about it.”

Before Anderson’s discovery, scientists modelled crystal disorders 
as perturbations that scatter electrons randomly, treating electrons 
as point-like particles. This logic led to the description of transport 
in such media as Brownian motion, which underlies Ohm’s law. 
However, in his paper, Anderson revisited the effect of disorder on 
the evolution of an electron’s wavefunction in an otherwise periodic 
crystal1. Anderson analysed the problem in the quantum regime, 
thus fundamentally accounting for the wave nature of the electron, 
and found that the classical diffusive motion of the electron breaks 
down as the electronic wavefunction becomes exponentially local-
ized, under a broad range of conditions. Consequently, when the 
electron is initially placed on one atom, its wavefunction will no 
longer expand to cover the whole crystal with time, but it will rather 
remain localized around its initial position. Thus, the material will 
cease to conduct charge, and eventually become an insulator. This 
localization phenomenon is a direct consequence of interference 
between different paths arising from multiple scattering of the elec-
tron by lattice defects.

One of the inherent assumptions of Anderson’s model is that 
the potential is time-invariant. In reality, however, temporal vari-
ations in the potential (lattice + disorder) tend to dimish localiza-
tion effects. Moreover, the presence of temporal fluctuations (such 
as phonons) reduces the coherence of the scattering process, which 
destroys the interference effects and eventually leads to the recovery 
of Ohm’s law. Perhaps even more importantly, Anderson’s model 
represents a single particle, or an ensemble of non-interacting 
particles. But electrons are fermions, which fundamentally inter-
act (through Coulomb’s law or spin exchange, for example). When 
interactions are included, the scenario changes dramatically and 
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localization generally does not occur. These two preconditions 
underlying Anderson’s model — time-invariance of the poten-
tial and the absence of interactions — posed great difficulties for 
observing Anderson localization in atomic crystals. Nevertheless, as 
localization is in essence a wave-mechanics phenomenon, scientists 
later realized that it is universal to all wave systems, and in particu-
lar it should occur in optics2–4. In fact, the random scattering of light 
is ubiquitous throughout nature, occurring, for example, in clouds, 
milk and sugar. These media are all microscopically transparent to 
light; however, they appear opaque owing to the multiple scattering 
of light travelling through them. Optics seems an ideal framework 
to study localization effects, as coherence is naturally preserved 
and photons are inherently non-interacting bosons. This was the 
logic behind pioneering experiments that studied the transmission 
of electromagnetic waves through random media, which showed 
exponential decay of transmittance with sample length5–8.

Anderson localization in photonic lattices containing disorder
In the late 1980s, De Raedt, Lagendijk and de Vries proposed the 
‘transverse localization scheme’ for studying the effects of disor-
der on the transport of light, but this proposition was not adopted 
for a long time9. Interestingly, a similar suggestion had been made 
almost a decade earlier by Abdullaev10, but as it appeared in a 
Russian journal and was omitted from the translated edition, it 
remained practically unknown. Major advances came from a dif-
ferent area altogether: research into discrete solitons. In 1988, the 
existence of solitons in waveguide arrays was first suggested. This 
problem, under some approximations can be modelled by a dis-
crete cubic Schrödinger-type equation, hence solitons found in 
this setting are called discrete solitons11. It took a decade for sci-
entists to observe discrete solitons experimentally12, and another 
five years to demonstrate them in two transverse dimensions13, 
but by 2005 this area of nonlinear waves and solitons in pho-
tonic lattices (waveguide arrays) had become a major research 
area in nonlinear optics and soliton science (see recent reviews 
by Christodoulides  et  al.14 and Lederer  et  al.15). It was therefore 
natural to search for localization effects in paraxial disordered 
photonic systems. However, early experiments seemed rather 
discouraging16 or very preliminary17, partly because some of the 
concepts were missing (for example, the necessity for ensemble 
averaging to obtain meaningful results), and partly because the 
transverse localization scheme9 was unknown to researchers in 
the area of solitons. It was not until 2007 that the first success-
ful transverse localization experiments were performed18,19, and 
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many experiments followed (see, for example, refs  20–22). The 
transverse localization of light has become one of the most con-
venient and direct schemes for observing localization effects in all 
research areas. More importantly, many new ideas have emerged 
from these experiments, such as disorder-enhanced transport in 
quasiperiodic systems, super-ballistic transport (hyper-transport) 
and the quantum aspects of localization with entangled states. 

The transverse localization scheme is explained in Box  1. In 
this scheme, the evolution of a light beam in space behaves like 
the wave packet of a quantum particle, with the propagation coor-
dinate z replacing time. It is important to emphasize the role of 
ensemble-averaging in the transverse localization scheme, as 
demonstrated by the first experiments18. Namely, to obtain mean-
ingful experimental results in the photonic system, one must aver-
age over multiple realizations of the disorder because the typical 
propagation distance is too short to support self-averaging. The 
most important observable in the transverse localization scheme 
is therefore the intensity structure of the beam,  〈|Ψ(x,y,z = L)|2〉, 
emerging from the photonic system after propagating a distance L, 
averaged over multiple (~100) experiments with different spatial 
realizations of disorder.

The analogy between the Schrödinger equation and paraxial 
optics has been applied in many recent experiments to demon-
strate concepts from solid-state physics in an optical setting14,15. 
In the study of localization, this approach has opened the pos-
sibility of following the evolution of wave packets in disordered 
media at the microscopic level. Together with the inherent flexibil-
ity and controllability of optical systems, this approach led to the 
first direct observations of localization18, as originally described 
by Anderson: the expansion of an initially confined wave packet 
comes to a complete halt and attains exponentially decaying tails 
due to multiple scattering in a disordered crystal. In addition, 
this approach made it possible to observe other predictions of the 
theory, such as how individual Bloch modes become localized19. 
Absorption and thermal vibrations of the underlying potential are 
not problematic in this system; rather, they can be introduced in a 
controlled manner. This approach, which was originally conceived 
and implemented in the context of optical waves, was later echoed 
in experiments on the Anderson localization of matter waves23,24. 
It is important, however, to point out that the transverse locali-
zation scheme is associated with transport effects in one or two 
dimensions, and cannot describe transport phenomena in three 

dimensions, such as the phase transition associated with Anderson 
localization in three dimensions. Such phenomena must be stud-
ied using short pulses propagating in a volume whose disorder is 
frozen in time (see examples in optics6,8,25 and with cold atoms26,27). 
This Review is primarily dedicated to phenomena associated with 
transverse localization.

An important additional aspect of these optical set-ups is that 
they were the first to enable experimental studies of a related 
new problem: the interplay between nonlinear interactions and 
Anderson localization. The phenomenon Anderson predicted is a 
non-interacting linear interference effect. It therefore corresponds 
to disordered systems containing a single particle, or many identical 
non-interacting particles. This, however, is not generally the case for 
real systems, which usually contain many particles with non-neg-
ligible mutual interactions. The problem of the interplay between 
disorder and interactions is currently a great challenge in modern 
solid-state physics28,29. Nonlinear interactions may appear in vari-
ous forms in different systems, such as Coulomb or spin-exchange 
interactions among the electrons in a solid, and dipole–dipole inter-
actions between cold atoms. In optics, the nonlinear response of a 
disordered medium gives rise to indirect interactions between the 
photons through various mechanisms, such as intensity-dependent 
contributions to the refractive index. This mechanism corresponds 
to the case of cold atoms with pair-wise attractive or repulsive inter-
actions. This kind of optical nonlinearity enters the evolution equa-
tion as a nonlinear term ΔnNL = f(|Ψ|2) added to the index change 
Δn (the ‘potential’ term) in equation (1). Hence, this simple system 
of the Anderson localization of light in the presence of nonlinearity 
provides a basis for obtaining a better understanding of complex 
quantum many-body systems.

Figure  1 shows the configuration used by Schwartz  et  al. to 
observe Anderson localization in two-dimensional (2D) disor-
dered lattices18, together with characteristic photographs of the 
ensemble-averaged intensity patterns depicting the transition 
from ballistic to diffusive propagation when disorder is intro-
duced, and eventually leading to localization when the strength of 
the disorder is increased. A narrow probe beam is launched into 
the photonic lattice. In the absence of disorder, the beam expands 
during propagation (Fig. 1a, left) due to coupling between adjacent 
waveguides. In this scheme, the disorder halts the broadening of 
the beam (Fig. 1a, right) such that it becomes exponentially local-
ized in that transverse plane (hence the term ‘transverse localiza-
tion’). The experimental observation is shown in Fig. 1b–d. In the 
absence of disorder, the beam diffracts in the periodic structure 
by ballistic transport, which is manifested in the triangular sym-
metry of the intensity pattern (Fig.  1b) and in the fact that the 
width of the expanding beam grows proportionally with the prop-
agation distance. When weak disorder is introduced, this symme-
try is lost, and the intensity tunnels randomly among the lattice 
sites (Fig. 1c). Here, the transport is diffusive, as is evident by the 
Gaussian profile of the ensemble-averaged intensity pattern. When 
the level of disorder is increased, the output intensity profile nar-
rows and the beam acquires exponentially decaying tails (Fig. 1d). 
This exponential decay indicates that the (transverse) transport of 
light stops; after a short propagation distance, during which the 
beam expands diffusively, the (ensemble-averaged) beam diam-
eter reaches the localization regime and its diffraction broadening 
is arrested.

Shortly after the experiments by Schwartz et al.18, Lahini et al. 
carried out similar experiments in 1D lattices (1D arrays of wave-
guides)19. These experiments demonstrated that, in one dimension, 
as the disorder level is increased, transport changes from ballistic to 
localized without the intermediate diffusive regime observed in two 
dimensions. The experiments of Lahini  et  al.19 enabled the direct 
observation of how extended states (Bloch modes associated with 

The evolution of optical waves in the transverse localization 
scheme is described by the Schrödinger-type paraxial equation 
for monochromatic light:
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where z is the propagation coordinate, x and y are the transverse 
dimensions, Ψ is the slowly varying envelope of the field 
E(r, t) = Re[Ψ(x, y, z)ei(kz − ωt)] of frequency ω and wavenumber 
k  =  ωn0/c, n0 is the bulk refractive index and Δn is the local 
change in refractive index (lattice plus disorder), with |Δn| << n0. 
Equation (1) has the form of the Schrödinger equation when 
z → t and −Δn → V. Hence, the evolution of a light beam in space 
behaves like the wave packet of a quantum particle, with z replac-
ing time. Anderson localization requires a stationary potential, 
which implies that the index change Δn  in equation (1) must be 
propagation invariant; that is, Δn(x, y) must be z independent.

Box 1 | Transverse localization scheme
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the periodic lattice) transform into exponentially localized states 
(Anderson modes). The localized eigenmodes of a disordered lat-
tice have one particularly interesting property: modes near the band 
edges (of the spatial spectrum) are tightly localized, whereas those 
near the middle of the band are typically broader19. This creates a 
situation in which, for a finite system, the modes from the band 
edges are localized, while the width of mid-band modes is larger 
than the size of the system. In such a case, the mid-band modes 
behave as extended states (Bloch modes). Hence, starting from an 
ideal periodic lattice and increasing the strength of the disorder 
transforms more of the extended Bloch modes into highly localized 
Anderson states, with the band-edge modes first becoming local-
ized. Lahini  et  al. observed such transformation of Bloch modes 
into localized modes19.

Nonlinearity and disorder
The interplay between disorder and nonlinearity is an important 
issue relating to Anderson localization. One obvious question is 
what happens to the localization process itself, under weak or strong 
nonlinear conditions. For years, this issue has been controversial 
in studies examining the theoretical aspects of Anderson localiza-
tion. One early study30 conjectured that asymptotically localization 
prevails. Tight-binding simulations in 1D systems, specifically for 
Kerr-type nonlinearity, revealed that nonlinearity strongly affects 
the localization process31,32, thus leading to sub-diffusive trans-
port. Analytic (perturbative) attempts33 to resolve the issue were 
able to describe only the early stages of evolution, and supported 

the conjecture of asymptotic localization. However, the problem 
remains unsolved to this day (see review by Fishman et al.34).

Experimentally, the first attempts to address Anderson 
localization in the presence of nonlinearity were presented by 
Schwartz et al.18 and Lahini et al.19. The simplest way to introduce 
nonlinearity into an optical system is by increasing the intensity of 
the probe beam, such that it creates a nonlinear index change at the 
top of the disordered lattice. The experiments of Schwartz et al.18 
and Lahini et al.19 showed that the localization process is enhanced 
under self-focusing nonlinearity. Not only does the ensemble-aver-
aged beam become narrower, but also the characteristic exponen-
tial decay of localization appears at a lower disorder level.

The influence of nonlinearity on transport in disordered lattices 
can be rather complex, in a manner similar to the band structure 
associated with periodic media. Because dispersion can be either 
normal or anomalous (analogous to positive or negative effec-
tive mass of the electron in a crystal), one may expect localization 
effects to behave differently in these two regimes, when nonlinear-
ity combines with disorder. In the anomalous dispersion regime, 
a wave packet tends to narrow under self-defocusing nonlinear-
ity, whereas a self-focusing nonlinearity causes broadening. For 
a wave packet in the negative effective mass regime, one would 
expect self-focusing to delay the localization process in the pres-
ence of weak disorder. This is indeed the case for short propaga-
tion distances; however, for strong disorder the concept of effective 
mass no longer holds, and hence at some disorder level the system 
should change its behaviour abruptly. These ideas raise intriguing 
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Figure 1 | Transition from ballistic transport to diffusive transport, and eventually to Anderson localization. a, Transverse localization scheme. A probe 
beam propagates in a photonic lattice with a controlled level of disorder. Without disorder, the beam exhibits ballistic transport; its width increases linearly 
with propagation distance (left). Under the influence of disorder, the beam becomes exponentially localized in the transverse plane, maintaining its mean 
width throughout propagation (right). b–d, Ensemble-averaged intensity distribution at the output face of the lattice. The results reveal a gradual transition 
from ballistic transport (b), where the diffraction pattern reflects the lattice symmetry, to diffusion (c) in the presence of disorder (intensity profile has a 
Gaussian shape, plotted in logarithmic scale), and, at stronger disorder, to Anderson localization with exponentially decaying tails (d). Figure reproduced 
with permission from ref. 18, © 2007 NPG.

FOCUS | REVIEW ARTICLESNATURE PHOTONICS DOI: 10.1038/NPHOTON.2013.30



© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

200 NATURE PHOTONICS | VOL 7 | MARCH 2013 | www.nature.com/naturephotonics

questions regarding the interplay between the periodicity of the 
structure, disorder and nonlinearity.

Localization and enhanced transport in quasicrystals
Quasicrystals (QCs)35,36 (see also the associated Review by Vardeny 
in this issue37) form a class of structures that constitutes an inter-
mediate phase between fully periodic and fully disordered media. 
They do not have a unit cell and do not exhibit translational sym-
metry, yet they possess long-range order and display Bragg diffrac-
tion. The eigenstates of QCs are multifractal critical states, which 
may be normalizable (and thus localized) or not (in which case they 
act as extended states). Many of the properties of QCs are now well 
understood, but some fundamental questions remain. Perhaps one 
of the most intriguing questions is associated with transport, which 
is directly related to the critical nature of a QC’s eigenstates, par-
ticularly in the presence of disorder38. In contrast with crystals, in 
which disorder always acts to arrest transport, it has been suggested 
that disorder can enhance transport in QCs39. Indirect experiments 
have shown that, in some regime, increasing disorder can enhance 
transport40. However, until recently, transport in QCs containing 
disorder was not understood, and the experiments, being indirect, 
did not help much to unravel the physics involved. 

Researchers have studied photonic QCs in the domain of elec-
tromagnetic waves for some time now41–45. Studies of disordered 
photonic QCs were therefore expected sooner or later. Indeed, 
two recent studies explored this topic: one investigated disorder-
enhanced transport and localization effects18, while the other20 
demonstrated the phase transition associated with the 1D potential 
described by the Aubry–André model46 (see below).

Studies of disorder-enhanced transport in photonic QCs22 
were carried out in a system similar to that of Schwartz et al.18, but 
employing a quasicrystalline lattice. Because this system facilitated 
imaging of the propagating wavefunction, it enabled the first direct 
experimental observation of disorder-enhanced transport in QCs22. 
Indeed, disorder considerably enhances the transport of wave 
packets associated with eigenstates in the proximity of a pseudo-
gap (the region of the Fermi energy in electronic systems). These 
experiments helped explain the underlying physical reason for this 
enhancement: disorder-enhanced transport occurs because disor-
der acts to couple highly localized states near the pseudo-gap, and 
consequently the states become more extended. When disorder is 
further increased, experiments revealed finite-range, diffusive-like 
transport. On increasing the disorder even further, localization 
eventually prevails: the width of the wave packet shrinks, and its 
tails display exponential decay.

Another interesting connection between QCs and localization 
is displayed in a 1D system known as the Aubry–André model. In 
this system, the onsite energy (or, equivalently, the tunnelling coef-
ficient) is modulated spatially with a periodicity that is incommen-
surate with the lattice periodicity46. This system is known to be a 
1D QC. An interesting feature of the spectrum of this system is the 
existence of a threshold value for the modulation strength, beyond 
which all eigenstates convert from extended to localized. Such a 
transition to localization in a standard Anderson localization sys-
tem occurs only in three dimensions, and hence is not accessible 
to transverse localization experiments. Lahini  et  al. reported the 
first realization of the Aubry–André system and observation of the 
localization transition, together with a description of the nonlinear 
effects on the localization in this system20.

Finite quasiperiodic Aubry–André systems, even below the 
localization transition, have been found to support localized edge 
states on one of their boundaries. In recent work, this observa-
tion has provided a new understanding of the connection between 
QCs and the class of novel states known as topological insulators47. 
This work not only showed that a 1D QC can support non-trivial 

topological states, which were previously believed to exist only in 
two dimensions or higher, but also gave the first experimental dem-
onstration of the process of adiabatic pumping — known sometimes 
as Laughlin pumping — in which the localized states shift from one 
side to the other in an adiabatically modified structure. 

Hyper-transport stochastic acceleration by evolving disorder
Since Anderson’s initial study in 1958, scientists have known that 
localization requires the potential to be constant in time (‘frozen’). 
Otherwise, if the disorder evolves dynamically (for example, fluctu-
ates in time), localization breaks down and transport resumes. But 
would such transport be diffusive, or would disorder increase the 
transport rate beyond diffusion? A recent study presented experi-
ments48 supported by simulations, and subsequently by a semi-
analytic model49, showing that an evolving random potential can 
give rise to hyper-transport. In this regime, the spatially disordered 
fluctuating potential causes stochastic acceleration, which makes an 
initial wave packet expand at a faster rate than ballistic, while its 
transverse momentum spectrum expands continuously. Although 
these experiments were carried out in a disordered photonic system 
in the transverse localization scheme, the phenomenon is relevant 
to all waves systems containing disorder.

Anderson localization has been traditionally studied in periodic 
systems containing disorder18,19 (see also references in ref.  50 on 
electronic systems) and in fully random potentials5–8,51, but in both 
cases the disorder is ‘frozen’. Some researchers have also explored 
transport in potentials that are random in space and fluctuate in 
time. However, only a handful of studies — all strictly theoretical — 
have suggested hyper-transport, transport mechanisms through 
which the region within which a particle can be found expands 
faster than ballistic expansion52–56. A picture of such motion, in 
terms of resonances between the particle and the potential, was 
developed in 197252. Ten years later, a related quantum model53 
showed that the root-mean-squared displacement of the particle in 
a temporally fluctuating spatially random potential grows with an 
exponent of 3/2 in time (whereas the exponent is 1/2 for diffusion 
and 1 for ballistic transport). Later theoretical studies identified the 
hyper-transport of particles54–56 in fluctuating potentials with corre-
lated disorder (that is, when the bandwidth of the disorder is finite). 
Finally, the first experimental proof that evolving disorder can give 
rise to hyper-transport was presented by Levi et al. in 201248.

The hallmark of ballistic transport is that the expansion rate of 
a wave packet is proportional to time, while the width of its spec-
trum in momentum space remains constant. In the hyper-transport 
regime, the wave packet expands at a much faster rate than that 
of ballistic evolution, while at the same time its width in momen-
tum-space also expands dramatically. Experiments performed by 
Levi  et  al. were carried out in the transverse localization scheme 
described by equation  (1): a probe beam was launched into a 
photonic medium containing spatial disorder that also fluctuated 
dynamically in the propagation direction. The experiments were 
repeated many times with different realizations of the disorder, 
and meaningful results were obtained by ensemble averaging48. 
The ensemble-averaged beam intensity and its spatial spectrum are 
analogous to the probability amplitudes of finding a quantum par-
ticle or measuring its momentum, respectively. This direct analogy 
with transport in quantum systems made the findings relevant for 
many wave systems containing disorder.

Typical experimental results are shown in Fig. 2. First consider 
two established cases: free (ballistic) diffraction and localization. 
Figure  2a shows the intensity cross-section of the beam in the 
absence of disorder: the 514 nm wavelength Gaussian beam of 15 μm 
(full-width at half-maximum) diffracts freely for 1 cm, experiencing 
ballistic transport in the medium, to an output width of 166.42 μm. 
Figure  2b shows the ensemble-averaged intensity structure of the 
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beam exiting the medium, after propagating through the z-invariant 
spatial disorder. This beam is exponentially localized with a width of 
around 103 μm — much narrower than the freely diffracting beam 
of Fig. 2a.

Consider now experiments with dynamically evolving (fluctuat-
ing) disorder, and examine what happens when the rate of dynamic 
fluctuations is increased. Figure 2c,d shows the ensemble-averaged 
intensity structure for the same initial wave packet, after propagat-
ing in the presence of evolving disorder. The disorder evolves faster 
in Fig. 2d than in Fig. 2c. The widths of the (ensemble-averaged) 
beams experiencing dynamic disorder are considerably larger than 
that of the freely diffracting beam: ~230 μm and ~270 μm, compared 

with the ~166 μm beam of Fig. 2a. The beams propagating through 
the rapidly fluctuating spatial disorder exhibit hyper-transport. 
The widths of these beams increase with evolution rate. It is also 
interesting to examine the shape of the beams undergoing hyper-
transport: their cross-sections (Fig. 2c,d) display increasing devia-
tion from the exponential structure that characterizes the localized 
beam of Fig. 2b.

These experimental and numerical findings raise fundamental 
questions regarding the evolution of the spectrum of wave packets 
undergoing hyper-transport. Figure 2e displays the spatial power of 
the spectrum of the freely diffracting beam shown in Fig. 2a. The 
power spectrum of this beam is the same as the power spectrum of 
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Figure 2 | Hyper-transport of a light beam propagating through fluctuating spatial disorder. a–d, Ensemble-averaged shape of the beam exiting the medium 
(cross-sections displayed in a logarithmic scale, with their corresponding width Weff). a, Without disorder, the beam undergoes ballistic transport. b, When 
disorder is propagation-invariant, the beam displays Anderson localization, which is manifested in its exponential structure. c,d, When disorder evolves 
during propagation, the beam expands faster than it would in the ballistic transport regime. e–h, Corresponding spatial power spectra of the beams displayed 
in panels a–d. i, Simulation results showing the width of the ensemble-averaged power spectrum of the beams, undergoing ballistic transport (homogeneous 
medium; lower curve), localization (propagation-invariant disorder; middle curve) and hyper-transport (evolving disorder; upper curve). For ballistic 
transport, the spectral width is conserved. For localization, the spectrum initially expands but once localization is reached the width remains unchanged. In 
contrast, the spectrum of a beam undergoing hyper-transport expands continuously. Figure reproduced with permission from ref. 48, © 2012 APS.
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the input beam (see also lower curve in Fig. 2i). Consider now the 
case in which the beam is propagating through z-invariant disorder, 
where the beam becomes localized (Fig.  2b). The ensemble-aver-
aged power spectrum of this localized beam is displayed in Fig. 2f: 
its spectral width Δk is wider than that of the freely diffracting beam 
(Fig. 2e). Simulations of this case, presented in Fig. 2i, reveal that Δk 
for the Anderson-localized beam increases during the early stages 
of propagation, where the ensemble-averaged beam reshapes due 
to multiple scattering, but once the wave is localized the spectral 
width no longer varies. Finally, and most interestingly, the power 
spectrum of a beam undergoing hyper-transport is found to expand 
throughout propagation (Fig. 2g–i). The randomly fluctuating spa-
tially random potential causes stochastic acceleration, which is 
manifested in the spectral expansion of the wave packet undergoing 
faster-than-ballistic transport.

Localization with quantum-correlated photons
The new experimental playground provided by optics not only ena-
bles direct observations of several key phenomena related to locali-
zation, but also raises many new questions that were experimentally 
irrelevant beforehand. One particularly intriguing question relates 
to the co-localization of several particles simultaneously.

Anderson localization is primarily a wave phenomenon, and 
hence it could be realized and investigated using classical light. 
However, one may question what would change if these experiments 
were performed with non-classical light. Would the quantum nature 
of the field affect localization? A single photon travelling down a 
waveguide array performs a quantum random walk; that is, it hops 
randomly from one waveguide to its neighbour, and the interfer-
ence of all possible paths leads to the discrete diffraction pattern 
that characterizes ballistic expansion57. Indeed, the propagation of a 
single quantum particle should not show any deviations from clas-
sical wave propagation, as the wave intensity profile represents the 
probability of arrival at any particular position. However, when two 
or more indistinguishable particles co-propagate in the system, even 
without any interactions, intriguing correlation properties appear 
that reflect quantum statistics58. Such quantum correlations can be 
detected through intensity–intensity correlations of classical waves 
(known as Hanbury Brown and Twiss correlations58) or coincidence 
counting with single-quantum detectors59.

The correlations of two indistinguishable photons travelling in a 
periodic lattice were first discussed by Bromberg et al.58, who also 
measured Hanbury Brown and Twiss correlations for various input 
conditions. These studies were then extended to true single-photon 
systems59 and placed in the context of quantum random walks for 
two indistinguishable particles. The correlation maps were pre-
dicted to be different for bosonic and fermionic particles. For exam-
ple, two bosons initially on two neighbouring sites show bunching 
(that is, they tend to propagate ballistically in the same direction), 
whereas fermions in the same situation tend to antibunch58,60. Most 
interestingly, fermions and even anions can be simulated by sending 
entangled photon pairs with appropriate phases61. 

How are such correlated quantum walks affected by disorder? 
A theoretical study by Lahini  et  al. had surprising results60. On 
short time scales, localization of one of the particles determines 
whether the other particle will be localized. On longer time scales, 
when both particles are localized, new and surprising results were 
predicted to appear. In particular, two particles that co-localize in 
such systems often exhibit an oscillatory behaviour in their average 
separation. Consider, for example, the distance between two bosons 
that were initially launched on the same site. Naively, one would 
expect the (mean) distance between them to decay exponentially, 

Figure 3 | Simulations of the correlations between the positions of two particles co-localizing in a disordered lattice. a, Particles are launched in adjacent 
sites, labelled 0 and 1. b,c, Correlation map for detecting two bosons (b) and fermions (c) at locations r and q. Note the checkered pattern for fermions. 
d, Probability distribution for the distance between two co-localizing bosons (blue) and fermions (red). e–h, Simulations as in a–d, but for two particles 
launched at sites −1 and +1. Figure reproduced with permission from ref. 60, © 2010 APS.

Figure 4 | Experimental measurements of quantum correlations in a 1D 
photonic lattice. a, Intensity–intensity correlations measured for light 
launched into site 0. b, Intensity correlation as a function of distance 
between the waveguides. The oscillatory correlation echoes the quantum 
distribution for indistinguishable bosons. Figure reproduced with 
permission from ref. 62, © 2011 APS.
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with an exponent that is related to the localization length. However, 
surprisingly, the distance between the bosons favours an even num-
ber of sites. Similarly, two fermions launched in two neighbouring 
sites tend to localize to locations separated by an odd number of 
sites. Figure  3 shows the correlation maps and distance distribu-
tion predicted for bosons and fermions with two different input 
conditions. Note in particular the checkered patterns, which reflect 
an oscillatory distance distribution for the co-localizing particles. 
These effects are strong in systems in which the coupling strength 
is randomized (off-diagonal disorder). Although no experiment has 
yet verified this prediction with non-classical light, intensity–inten-
sity correlation experiments with classical input fields have indeed 
reproduced the oscillatory correlation function for lattices with off-
diagonal disorder62 (Fig. 4). The oscillatory pattern reflects the sym-
metry of the spectrum characterizing non-diagonal disorder.

Outlook
Bringing the concepts of Anderson localization to the domain of 
optics has greatly enhanced our understanding of fundamental pro-
cesses such as transport and multiple scattering. The first experi-
mental efforts were intended to observe the principal localization 
phenomena, which had been predicted decades earlier. However, 
this new experimental approach gives rise to a wealth of completely 
new ideas, some specific to optics but many universal to all wave 
systems that contain disorder. Two examples of such ideas are recent 
studies on hyper-transport and on localization with entangled pho-
tons. Other examples (not described here) include random lasing63, 
amorphous photonic lattices64 and nonlinear optics in fractal struc-
tures65. Many of the concepts described in this Review are directly 
relevant to matter–wave systems that contain disorder, in which the 
main challenge is carrying out localization experiments in domains 
where optics cannot provide answers, such as the localization of 
interacting fermions66 or a Tonks–Girardeau gas67. We have pro-
vided a contemporary summary of the Anderson localization of 
light. However, as often happens in science, when a new experimen-
tal paradigm is proposed, the best ideas are most probably yet to 
be suggested; such ideas will surely reveal new information on the 
universal phenomena associated with the transport of waves in ran-
dom media.
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